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The range of validity of the diffusion equation in describing point-defect annealing kinetics is examined, 
and it is concluded that even for sinks of atomic dimensions, the solutions of the diffusion equation which 
correspond to zero thermal excess concentration at sink sites give a good account of the annealing behavior. 
The annealing of point defects to stacking-fault tetrahedra, dislocation loops, and to dislocations which are 
allowed to climb, is then treated by means of equations which describe the annealing in the presence of 
time-dependent sink properties, using also an electrostatic approximation to sink efficiencies. Finally, the 
problem of void stability is discussed. 

L INTRODUCTION 

IF point defects are introduced into a crystalline solid, 
then at temperatures at which the defects are 

mobile, they migrate through the lattice and are 
gradually annihilated at faults in the crystalline struc
ture. These "sinks" may be extended in space as in the 
cases of crystal boundaries or dislocations, or more 
localized in the form of voids, stacking-fault polyhedra, 
or dislocation loops. The sinks absorb the point defects 
with efficiencies which depend on the individual sink 
characteristics and which, as originally pointed out by 
Seitz,1 may be modified by the absorption process. 
Given an initial excess defect population c(t) above the 
thermal equilibrium value CQ, the various types of sink 
present in a particular region complete in a complicated 
fashion in reducing the excess population to zero. Since 
the point-defect population may be monitored as a 
function of annealing time, and also, the sink character
istics may in many cases be observed, theoretical 
predictions concerning the point-defect loss as a function 
of annealing time become of considerable interest. 

Our approach to the kinetics of defects in a lattice is 
made through the diffusion equation. We first examine 
the applicability of this macroscopic equation in the 
presence of static sinks whose dimensions may be only 
of the order of magnitude of the lattice spacing. A more 
general description of the annealing is then developed 
to include sinks whose dimensions are time-dependent. 
Finally, we give quantitative discussions of the anneal
ing characteristics in the presence of the various types 
of sink known to take part in reducing the point-defect 
population of metals to its thermal equilibrium value. 

II. THE DIFFUSION PROCESS 

It is assumed that the point defects are distributed 
among a set of lattice points individually identified by 
means of a subscript. At any time t, the occupation 
number <rn{t) of the nth. site is either 1 or 0. By averaging 
over an ensemble of equivalent systems, the occupation 
number an{t) may be reduced to a probability p(rnyt) of 
occupation at time t of the site n at position r„. The 

* Supported in part by the U. S. Atomic Energy Commission. 
1 F. Seitz, Phys. Rev. 79, 890 (1950). 

probability of a defect jumping from the site n to the 
nearest neighboring site / is then p{tnit){l —p(rht)~]rnr

l 

with Tni the jump time from n to /. If the jump time 
Tni=r for all neighboring n and /, the flux of defects 
leaving the nth site is described by the partial difference 
equation 

H{p(*n,t)-p(xht))T-l=-
l 

'dp(tn,t)/dt, (1) 

with the sum extending over all neighbors / of n. It 
should be noted that the assumption of equal jump 
times for all jump paths not only restricts us to a 
treatment of diffusion in the good crystal, but also 
excludes from the discussion any effects of interactions 
between the point defects (and hence of chemical 
gradients) or between point defects and strain fields. 

Equation (1) may be separated with eigenvalues am 

to give solutions 

pm(rn}t)=pm(rn) exp(-am
2Dt), (2) 

with pm(tn) the solution of 

E{#*(r»)-#»(ri)}r-1=a«2^«(rn) . (3) 
i 

For given boundary conditions the solutions pm(rn) 
corresponding to different eigenvalues are evidently 
orthogonal, since Eq. (3) may be written 

^(inipm(ri)=am
2Dpm(rn), (4) 

where ani is symmetric and has orthogonal eigenvectors. 
Thus, 

JLpi(rn)pm(rn) = Aimdim; ai27^am
2- (5) 

n 

In what follows we assume that the pi(tn) are ortho-
normal, with A im= 1. 

In the case of a simple cubic lattice 

£{#. 
i 

.(rn)-pm(n)} = -5*pm(rn) (6) 

with 

and the 
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are second divided-difference operators 
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parallel to the cubic axes. If a is the lattice spacing, 

d2 d* 
5x

2=a2 ( a 4 / 1 2 ) — + • • • . (7) 
dx2 dx* 

Equation (1) therefore leads to the equation 

DV*pm(rn)+0(a*) = dpm(rn)/dt, (8) 

with D=a2/r, which reproduces the diffusion equation 
in the approximation that terms ^a4(dA/dx4) are 
negligible. To the same approximation, the functions 
pm{*n) become the familiar continuous solutions of the 
wave equation which are the functions used in the 
usual eigenfunction expansion approach to the solution 
of the diffusion equation for a continuum.2 

If the approximate solution p(r) = po(l—b/r), appro
priate to the case of a spherical sink of radius b, is 
substituted into Eq. (8), the fourth-order operator 
produces a g function of amplitude ~a4/V4 with an 
angular dependence given by the first Kubic harmonic 
together with a small spherical symmetrical part. 
In this way the higher-order terms introduce the 
lattice symmetry into the diffusion in a fashion which 
is significant only in the case of small sinks when r~a. 
Since the pm(^n) are eigenfunctions of the scalar 
Helmholtz equation and therefore oscillatory functions 
of amr, the diffusion equation also breaks down for 
large eigenvalues such that ama is comparable with 
unity. 

In order to obtain a more general result, we Taylor 
expand pm(rn) round rn to give 

pm(rn)—pm(ri) 
= - l - V ^ ( r n ) - J V - L - V ^ ( r w ) : (9) 

with L = l l and 1 the vector between the sites n and /. 
The term 

£ hVpm(tn) 
I 

vanishes from reflection symmetry, leading in an 
approximation analogous to that involved in Eq. (8), 
to the general diffusion equation 

V ' D . v M f n ) = 9Mr . ) / a / (10) 
with 

T D = Z H , 
I 

the sum extending over all nearest neighbors. For 
defects diffusing on bcc or fee lattice sites, D reduces 
once more to the scalar a2/r. 

The analysis given above shows that the annealing of 
point defects out of a perfect crystal may always be 
described by the exponential decay of components 
whose space variations are proportional to the eigen-
functions of the difference equation, Eq. (3). For 

2 See, for example, J. Crank, The Mathematics of Diffusion 
(Oxford University Press, New York, 1956). 

eigenvalues am such that am
2a2<<^l the difference 

equation (1) reduces to the diffusion equation (10) 
except in the neighborhood of small sinks. Since the 
solutions of the diffusion equation are oscillatory 
functions of amr, this criterion states that the diffusion 
equation approximation to Eq. (1) is valid except near 
small sinks, for eigenfunctions having a period occupy
ing several lattice distances or more. We do not have 
cause to use the higher eigenfunctions of Eq. (1), since 
they correspond to extremely abrupt changes in point 
defect density, and therefore to unobservably short 
annealing times. 

III. THE BOUNDARY CONDITIONS AT SINKS 

To the extent that the sinks maintain the thermal 
equilibrium concentration of defects in the lattice, they 
may be thought of as regions occupied by this thermal 
equilibrium concentration, so that the excess population 
pm(tn) is zero at sites in the sinks. However, the 
diffusion equation breaks down for jump paths involving 
sink sites because the jump times are not equal in the 
different directions. The boundary conditions which 
determine the eigenfunctions must therefore be applied 
at the sites neighboring the sinks, and are evidently 
of the general amplitude to derivative type, the 
amplitude specifying the jump rate of defects into the 
sink and the derivative corresponding to the defect 
flow rate to sites neighboring the sink by diffusion in 
the good crystal. 

The distinction between the condition ^TO(rn) = 0 at 
sink sites and the correction boundary condition is 
negligible except for sinks whose dimensions are of the 
order of magnitude of the lattice spacing. To illustrate 
this fact together with the breakdown of the diffusion 
equation near small sinks we have computed the 
smallest eigenvalue of Eq. (3) (which describes the 
annealing of virtually all the defects in an initially 
uniform distribution) for sinks which comprise an atom 
and the first few of its neighboring shells in a spherical 
fee crystal of radius R at whose periphery the boundary 
condition [dpi(r)/dr]R=0hja& been used. The computa
tion was effected by obtaining from Eq. (1) simul
taneous equations appropriate to the steady state, 
interrelating the occupation probabilities at various 
shells near the sink, and fitting these local probabilities 
smoothly onto a solution of the diffusion equation 
giving the same flow rate. For sinks composed, respec
tively, of an atom and its neighbors and an atom and 
its first three neighboring shells, the true flow rate 
proved to be 58% and 95% of that found on using the 
diffusion equation together with the boundary condition 
pm(r) = 0 at sink sites. Thus, even for very small sinks, 
the diffusion equation gives a sensible estimate of the 
defect flux, and for sinks having dimensions of several 
lattice distances, the error is negligible. 

The geometry involved in the interesting case where 
dislocations act as sinks is too complex to permit as 
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precise a discussion as that given above for spherical 
symmetry. However, one may note that the number of 
jump paths to the edge of a dislocation in an fee 
crystal is about ten per site on the edge, so that the 
local kinetics constitute only a small restraint on the 
rate at which random walking to a dislocation may 
occur, and the loss rate may therefore be only a little 
slower than that predicted using the diffusion equation 
and a reasonable dislocation "radius" as in the treat
ment by Koehler, Seitz, and Bauerle.3 This is to be 
contrasted with the results of a method of estimation 
due to Damask and Dienes4 who assume that at all 
times, the point defects and sinks are randomly dis
persed throughout the good crystal so that the loss 
rate is proportional to the average excess probability of 
occupation of a defect site multiplied by the number of 
jump paths terminating in the sink. The neglect of 
gradients driving the annealing and consequent 
overestimation of the probability of defects being close 
to the dislocation causes this latter method to predict 
a defect loss rate a factor of 102 faster than the value 
found using the lowest eigenvalue of the diffusion 
equation with typical values of dislocation density 
~108. A similar type of error, made in the calculation 
of the value of an assumed eigenvalue, invalidates the 
conclusions of Kimura, Maddin, and Kuhlmann-
Wilsdorf.5 

IV. TIME-DEPENDENT BOUNDARY CONDITIONS 

The standard method of solving diffusion problems is 
to make an expansion of the defect distribution at 
time /=0 in terms of eigenfunctions which satisfy the 
boundary conditions.2 Provided that the boundary 
conditions do not change, the exponential decay of 
these eigenfunctions then describes the subsequent 
behavior of the system. In this way solutions have been 
obtained for the annealing of defects out of the surface 
of samples having various symmetries. The main 
characteristic of these systems is the behavior at short 
times when the average occupation probability over the 
sample may be shown to obey the equation 

p(t)=Po(l-2(Dt/^A/V), (11) 

where po is the initial probability (assumed uniform), 
A is the surface area, and V the sample volume. This 
equation describes up to half the annealing in regions 
having smooth surfaces, the last fraction of the anneal
ing tending towards the simple exponential decay 
associated with the smallest eigenvalue alone.6 

3 J. S. Koehler, F. Seitz, and J. E. Bauerle, Phys. Rev. 107, 
1499 (1957). 

4 G. J. Dienes and A. C. Damask, Discussions Faraday Soc. 31, 
29 (1962). 

6 H . Kimura, R. Maddin, and D. Kuhlmann-Wilsdorf, Acta 
Met. 7, 145 (1959). 

6 The possibility of using this latter property to measure the 
diffusion coefficient of defects has been noted by A. Blandin and 
J. Friedel, Acta Met. 8, 384 (1960). 

When the annealing is caused by many localized 
sinks, it is observed that a maximum in the occupation 
probability occurs between the sinks.7'8 A region of 
the lattice is then assigned to each sink and an eigen-
function expansion made in each region, satisfying the 
boundary conditions near the sink and having zero 
gradient at the surface of the region. In this way an 
approximate solution of the annealing is obtained. 
However, if the sink properties are time-dependent, 
the method breaks down because the eigenfunctions do 
not satisfy the boundary conditions at all times. In 
what follows, we develop a procedure by means of 
which the annealing may be determined under these 
circumstances. 

Let us take an orthonormal set of functions 

pm(rnM') = pm(rn,t)exp[-an
2(t)D(t)(t'-t)~] (12) 

of which the pm(tnit) are eigenfunctions of Eq. (3) 
having eigenvalues am(i), and which satisfy the bound
ary conditions at tf—t. For a given distribution of 
defects at t'=t} namely, 

p(?n,t) = T,Pl(t)pm(Tn,t) (13) 

I 

the distribution change at time tf=t+8t is 
bp(tni t+dt)=-Z[Pm(t)-(3m°(t)l 

m 

Xpm(tn,t)am\t)D{t)M, (14) 

where we have taken the thermal equilibrium defect 
distribution at / to be 

Po(U,t) = T,Pm°(t)pm(rn,t) (15) 
m 

and have assumed that 8t is sufficiently small that the 
exponential could be expanded as shown. 

The distribution at t+8t may also be expressed in 
terms of eigenfunctions pm(rn, t+dt) which satisfy the 
boundary conditions at t+dt: 

p(rn, t+8t) = Y, Pm(t+8t)pm(rn, t+dt) 
m 

T dpm(rn,t) dpm(t) "I 
= E Pm(t) + pm(rn,i) \8t. (16) 

mL dt dt J 

On equating Eqs. (16) and (14), multiplying each side 
by pm(rn,t), and summing over all n we find 

dfim(t) 
=-am

2(t)D(i)\j3m(t)-pm
0(t)l 

dt 
dpl(tn,t) 

-LfcCflE *m(w). (17) 
I n dt 

7 F. S. Ham, Phys. Chem. Solids 6, 335 (1958). 
8 G. J. Dienes and G. H. Vineyard, Radiation Effects in Solids 

(Interscience Publishers, Inc., New York, 1957), p. 143, 
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The last term on the right of Eq. (17) may be rewritten 
in terms of a parameter £(t) which measures the 
changing sink properties—say the dislocation climb or 
the edge of a stacking fault tetrahedron, to yield 

dfim(t) 

dt 

E fr(0£ P»(r»,0 • 
dt i df 

(18) 

In the event of a continuous production of defects 
occurring as in radiation damage experiments, an 
additional term dfi(t)/dt must be included on the right 
side of Eq. (18). We note that by definition 

E Pm(tn,t)pl(tn,t) = 5lm , 
n 

dpm(rnjt) pi(rn,t) 
E — ~ — M W ) = - E Pm(u,t)—— (19) 

df *r 
and 

E #«(r».0 = 0. 
df 

The set (17) of coupled differential equations may in 
principle be solved to yield a complete description of the 
annealing behavior. In practice, however, this is not 
possible, and it is necessary to approach the solution in 
approximate fashion in order to obtain information 
concerning various sink properties. 

V. THE ELECTROSTATIC APPROXIMATION 

Ham7 has pointed out that to the extent that a steady 
state is established in the diffusion of atoms to a sink 
region, the diffusion equation may be approximated by 
Laplace's equation and the loss rate found from the 
solutions of the latter equation. A neat statement of 
this observation is that the effective radius of any 
geometry of localized sink is equal to the electrostatic 
capacity of a conducting body having the same dimen-
tions as the sink. 

If we substitute the solution of Laplace's equation, 

P(*)=H »̂«r-nr"1Pnm(coŝ ) $mtn<p 

costn<p 
(20) 

into the space part of the separated diffusion equation 

V*p{r)=-a?p{r) (21) 

then terms on the left are <^T-n~z and on the right 
^a?r~n~l so that for small r, the terms on the left are 
much larger than that on the right, and therefore the 
cancellation of the left side occurring in Laplace's 
equation is satisfactory for small r for the diffusion 
equation also. In fact the spherically symmetric solution 

of the diffusion equation may be expanded as 

pi(r) = po(b/r+atf*/6 ) , (22) 

where b is the radius of the special sink. If a radius p 
exists such that pza?<£fib and s»mp~n<<C?oo for all n and 
m, we can fit the solutions of Eqs. (22) and (20) 
together at p with soo=b, the radius of the equivalent 
spherical sink which we shall call the effective sink 
radius. Comparing the probability distribution of Eq. 
(20) with the potential distribution about a charged 
conductor of the same dimensions as the sink, which 
may be obtained by replacing p(r) by V(r) and Snm 

by qnm, the latter being the charge multipole distribu
tion, we note that qoo=CVo with C the capacity and Vo 
the potential of the conductor. Hence by equating 
p(r)/po to V(r)/Vo, we find that the effective sink 
radius is equal to the electrostatic capacity as stated 
above. Since the eigenvalue of the slowest annealing 
eigenfunction is closely given by 3b/R3=ai2 where R 
is the radius of the region being voided by the sink, the 
rate at which the great majority of the defects are 
absorbed may be determined simply by referring to the 
capacity of a body of the appropriate geometry. The 
values obtained by Ham of the eigenvalues for ellip
soids of revolution are readily reproduced in this 
way from the well-known capacities of these bodies. 

The conditions under which the solutions of Eqs. (20) 
and (22) may be fitted together are not too stringent in 
practice, for the first condition is reasonably well 
satisfied in the case of the smallest eigenvalue even for 
p as large as R/2. The second requirement is either of 
high sink symmetry or that the sink be considerably 
smaller than R, corresponding to the need for sinks 
which are well separated in comparison to their dimen
sions. For the larger eigenvalues, the situation is more 
difficult, but as stated previously, the higher-order 
eigenfunctions are irrelevant to the annealing except 
for the small initial transient which they produce. 

VI. STACKING FAULT POLYHEDRA 

In gold quenched from temperatures above 800 °C, 
tetrahedra whose faces are stacking faults with edges 
of stairrod dislocations are observed to form and act as 
sinks for vacancies.9 The precise mechanisms of nuclea-
tion and growth are not at present clear, but the former 
has been linked convincingly with the presence of small 
clusters in the lattice by de Jong and Koehler,10 while 
the growth has been discussed in terms of ledges moving 
across the faces of the polyhedron.10,11 Because of the 
nucleation conditions, growth has been observed only 
in the presence of mixed single and divacancy anneal
ing, for which accurate solutions of the diffusion equa
tions are not at present available. It seems likely that 

9 R. M. J. Cotterill, Phil. Mag. 6, 1351 (1961). 
10 M. de Jong and J. S. Koehler, Phys. Rev. 129, 49 (1963). 
11 H. Kimura, D. Kuhlmann-Wilsdorf, and R. Maddin, Appl. 

Phys. Letters 3, 4 (1963). 
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the growth mechanism will be most readily elucidated 
from measurements involving quenching of samples 
already containing the tetrahedra, from sufficiently low 
temperatures that single vacancies dominate the 
annealing. In what follows we discuss some simple 
possibilities of this latter type of kinetics. 

Let us first assume that the defects are absorbed at 
the surfaces, presumably by virtue of the ledges 
sweeping along and collecting the point defects neigh
boring the surface. The electrostatic capacity of a 
conducting tetrahedron is about c/2 where c is the edge 
of the tetrahedron. The smallest and most important 
eigenvalue of the diffusion equation is then 

ai2(0 = 3c(/)/2i?s= 2wc(t)N9, (23) 

where N8 is the number of tetrahedra per unit volume. 
The number of vacancies contained in a tetrahedron of 
edge c(t) is about c2(t)/a2 with a the lattice spacing, as 
may be seen from the fact that an increment 8c=a/y/2 
in edge length results from the addition of 8N=^J2c/a 
vacancies. If N(t) is the thermal excess number of free 
vacancies per tetrahedron and No is the number con
tained in a tetrahedron when the annealing is completed, 

dN/dt=TNsDaN(N0-N)1/2 (24) 

for which the solution having N=Ni at t—0 is 

2TNoll2NsDat=tanh-1[(iVr
0~iV)/iVro]1/2 

-tanhr^iNo-Nj/Noy2. (25) 

For small quenched-in concentrations Ni<^No and c 
does not change significantly during the annealing, so 
that Eq. (25) reduces to 

iV^iVi exp[-27rcNsDQ. (26) 

The absorption of defects may occur in the neighbor
hood of the corner of the tetrahedron rather than at the 
faces. If we specify a radius b of the region round each 
corner at which absorption occurs, then from the 
capacity 

Cc^4b(l-3b/c) (27) 

of the equivalent conductor, we obtain the annealing 
equation 

dN/dt= 16TNNsb(l-3b/c)D. (28) 

To the extent that b<^c, one then finds that the defect 
population is described by 

N=Ni e x p [ - lfaNsbDQ. (29) 

If, on the other hand, the corner and the stairrod 
dislocations are the operative parts of the sink, the 
absorption rate is more difficult to estimate without 
indulging in a fairly lengthy computation of the 
capacitance appropriate to this geometry. I t is evident, 
however, that the absorption rate will be intermediate 
between the values given by Eqs. (26) and (29), and 
show a dependence on c which is not exhibited in the 
case of annealing to the corners alone for b<£c. 

VII. DISLOCATION LOOPS 

Both vacancies and interstitials have been observed 
to condense to form a plane defect bounded by a 
dislocation loop and in both cases the defect acts as a 
sink which absorbs further point defects at the expense 
of an increased length of dislocation. As in the case of 
stacking-fault tetrahedra, the exact absorption mechan
ism remains obscure, two limiting cases appearing to 
be that the point defects are annihilated only at the 
dislocation or that the plane defect absorbs at all points, 
with diffusion of trapped point defects along the plane 
to the dislocation occurring with sufficient speed that 
their temporary presence on the surface does not affect 
further absorption. 

To determine the absorption rates in the two cases 
we need, respectively, the electrostatic capacity of a 
torus having the same radius p0 as the dislocation loop, 
and cross-sectional radius p of atomic dimensions, or 
the capacity of a disk radius po and of negligible thick
ness. The former is12 

C*=-(Po2-p2)1 / 2 £ e-i/2+-(2po/p)/P-i/2+w(2p0/p) (30) 
7T m=0 

while the latter takes the form 

Ca=2p0/7T. (31) 

As before, the absorption rate of point defects follows as 

dN/dt=AwCaNaDN, (32) 

where Ca and Na are the capacities and concentrations 
per unit volume of the particular type of sink specified 
by a. In the case of the disk, Eq. (32) reproduces the 
result found by Ham in a study of precipitation 
phenomena. As stressed by Ham,7 the effects of growth 
of these types of sink are well represented by simply 
including the time dependence of the lowest eigenvalue 
of the diffusion equation, which in our present formal
ism, is represented by the time dependence of the 
capacity of the equivalent conductor, a simplification 
which results from the fact that the lowest eigenfunction 
describes the location of all except a fraction ~CJ/R2 

of the point defects. 

VIII. DISLOCATIONS 

The diffusion of point defects to dislocations has been 
studied by Koehler, Seitz, and Bauerle3 in the approx
imation, appropriate to low defect concentrations, that 
the climb is negligible. In this section we consider the 
modifications of the annealing characteristics introduced 
by the presence of climb. 

The eigenfunctions of the diffusion equation which 
are appropriate to the problem of an infinitely extended 
linear sink in a cylindrical region of radius R are the 

12 H. Buchholz, Elektrische und Magnetische Potential]'elder 
(Springer-Verlag, Berlin, 1957). 
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cylinder functions 
L / \ ^ / \ sin/0 

plmipilmXnJ — ^lKpilrnrn) ; * (33) 

which satisfy zero derivative boundary conditions at 
r=R, and in accordance with the discussion of Sec. I l l , 
go to zero at a radius r—doi roughly atomic dimensions. 
This latter condition is not critical to the discussion 
since the eigenvalues are not sensitive to d, as, for 
example,7 is indicated in the case of the smallest 
eigenvalue: 

aoi2= 2£-2{ln£/d-3/5}-1 . (34) 

For an initially uniform distribution of point defects, 
frw(0) = 0 for 1^0 [cf. Eq. (18)] and the lowest-order 
eigenfunction describes the location of just over half the 
defects, p^a^nA) about 10%, etc. The value of a?02 is 
about 10«oi so that in the absence of climb, almost 
half the defects anneal out in a time of (a^D)~l. The 
existing quenching techniques are not fast enough to 
retain an appreciable proportion of these transients, 
so that a simple exponential annealing of about half 
original defect concentration is expected to result from 
a fast quench. 

In order to see the general effects of including climb 
in the analysis, we note that the time (a^D)~l with 
0:02—5/i? corresponds to a random walk of the order of 
R/5. Now if the transients cause a climb of a distance 
greater than i?/5, the transient components are 
replenished at the expense of the principal component 
poi(otiornjt) so that the transient anealing is extended. 
Evidently the criterion for the termination of transient 
annealing is 

P>roNd^/2, (35) 

with p the average occupation probability of a defect 
site, ro the atomic radius, and Nd the dislocation density. 
Equation (35) follows directly from the total dislocation 
climb 

{^PoR/roNJ1*, (36) 

which results from an initial occupation probability of 
po, together with the maximum transient random walk 
distance of R/5. Since the transient absorption starts 
at a rate, given roughly by the Damask and Dienes 
estimate as about a factor 102 greater than that due to 
the principal component, it is evident that in the 
absence of cottering and pinning of dislocations, it 
would be difficult to quench into a specimen a quantity 
of defects greater than that given by Eq. (35). 

It is interesting to consider in greater detail the 
quenching of samples under circumstances where the 
onset of this protracted transient behavior becomes 
important. To do this we consider the dislocation to 
carry along with its climb the region of radius R in 
which we are considering the kinetics subject to a zero 
derivative condition at R, the latter being an averaging 
device which permits us to estimate the annealing rate 
in terms of time independent eigenvalues. 

The coupling terms on the right of Eq. (28) are 
readily evaluated by means of the addition relationship 
for cylinder functions, 

| r+C|-n / 2e»( |r+C|)=^ir(ff)"nE(»+f»)eH-»W 

m 

XJr^m(0Tmn~112 (C0S6) (37) 
which in the case of the /=0 eigenfunctions gives 

dpom/d£=aom<5i(<xomr)cosQ (38) 

with cos0= r • £/Vf. The p0m therefore couple only to the 
piny showing, as discussed above, that the deviations 
from simple annealing are due to the asymmetry of the 
defect distribution round the dislocation caused by the 
climb. While the p\n components contain no defects; i.e., 

E *!»(*) = 0, 
i 

and therefore do not directly influence the annealing, 
they couple the pom together and thus cause an increased 
absorption rate indirectly. 

It is helpful to note that the smallest antisymmetric 
eigenvalue, an, is considerably smaller than a2o, being 
about 4aoi for typical dislocation densities, while the 
larger eigenvalues a0n with n> 1 all correspond to faster 
decays than «02. It is therefore to be anticipated that 
deviations from simple exponential annealing behavior 
will, in the low point-defect density limit, first become 
apparent because of a nonzero value of Pu(t) after 
the quench. We therefore use the approximation 
Pim(t) = 0, Z=̂ 0 except for #u(/). The equation describing 
Pn(t) is then 

dPn/dt= -an2D(i)\j3n(t)-Pn°m 

d{ dpoi(rn) 
— EMOE pn(*»). (39) 

it i df 
During the quench, the symmetric transients anneal 

much more rapidly than pn{rn) so that the first term on 
the right of Eq. (39) is negligible. Moreover, on inte
grating Eq. (39), we note that the term on the right 
having the coefficient J8OJ(0 lasts only for a period 
roi^ (aopD)"1, and since both /3oz(0) and TOI decrease 
very rapidly with increasing /, the series is well rep
resented by its first term leaving the value of #u(r), 
with r corresponding to the end of the transient 
phenomena, as 

rTd£ dp0i(rn) 
/8ii(r) / -rtfoiWE-TT—#"('») (4°) 

Jo dt d( 

dpoi(rn) 
^-/Soi(0)r« E Pn(in) (41) 

since 0oi(/) changes only slightly during a fast quench. 
Here £« is the climb which occurs during the transient 
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annealing. I t may be^ noted that Eq. (41) may be 
reproduced simply by considering the transients to be 
unaffected by the climb, and on the completion of 
transient annealing reanalyzing the remainder, namely, 
Poi(t)poi(rn), about the position & to which the disloca
tion has climbed. 

When the transients are completed, which may 
effectively be quite early in the quench, the rapid 
climb ceases and Pu(t) relaxes from the value PU(T) 
towards a much smaller value appropriate to the new 
climb rate, with the first term on the right of Eq. (39) 
dominant. For a quench ending at /== r', both 0oi(/) 
and fin(t) obey an equation of the form 

and therefore the value of PU(T') is given by 

r / W T ) T l l W 0n( r ) 

-Mr')- Mr') 

(42) 

(43) 

If 5 is the small fractional loss of j8oi W during the whole 
quench, a lower limit on the value of /3n(r') is therefore 

J8U(TO=/SII (T) e x p C - a n V a i o 2 ] , 

so that 

0n( f l= -/3oi(0)f» e x p [ - a i i 2 S / W ] 

(44) 

dpoi(tn) 
Xexp£—an2DiJ£l pn(rn) (45) 

describes the behavior of fti(/) during the post-quench 
annealing when the climb rate is small. 

Equation (45) may now be substituted into the 
equation 

i(0 

n -= — «0r. 
d{ dpn(rn) 

5oi (0 7i3n ( / )£ - poi(rn) 
dt ar 

(46) 

for the thermal excess of the component #oi(r«), and 
using 

# - r « dpoi(t) 
- = (47) 

dt 0oi (TO dt 

together with the second of Eqs. (19) we finally obtain 

d/3oi(t)/dt= -aoi2^oiZ>/{l-ro2/2/4 
XexpC~aiiVaoi2]exp[-an2 iDO} • (48) 

To obtain Eq. (48) we have made the approximation 
raf*=fo2/4 where ?0=fo— U is the climb during the 
post transient anneal, the approximation being valid 
owing to the near equality of the number of defects 
contained respectively in the transient and in the 
principal annealing distributions. In Eq. (48) the symbol 
/ which represents the sum over n in Eq. (46) is readily 
evaluated to give the magnitude ~3/2R for typical 
dislocation densities. 

Equation (48) is seen to predict infinitely fast anneal
ing rates for the state of the annealing after quenching 
when f o2/2/4 exp[—an25/aoi23= 1, a phenomenon which 
is symptomatic of the protracted transient annealing 
discussed in the early part of this section. With the 
value of / quoted above, and small fractional annealing 
5 of poi(rn) during the quench, this criterion may be 
written fa/R^l which is very close to the estimate 
obtained from Eqs. (35) and (36). For small point-defect 
concentrations Eq. (48) indicates that a transient of 
magnitude ^^/R2 and duration (an2/?) - 1 may be ex
pected as a consequence of the dislocation climbing into 
regions of the lattice which are still heavily populated 
with defects. 

In summary, one can say that this analysis has shown 
that unless the defect concentration is large enough for 
the climb to be of the order of magnitude of the disloca
tion separation, the climb does not affect the annealing 
appreciably. When the climb is larger than this magni
tude, it becomes difficult to quench into the samples 
concentrations of defects greater than that given by 
Eq. (35) unless cottering or pinning occurs. With 
p= 10~4 for iW^ lO 8 these conditions may in any event 
become difficult to achieve in practice, the more so 
since as in the case of gold, the tendency at high 
point-defect densities is for new and different types of 
sink to be nucleated. 

IX. VOIDS 

The kinetics of void growth by vacancy condensation 
may be obtained from the treatment by Ham of the 
analogous topic of precipitation in alloys. The nuclea-
tion of voids, either by precipitation on impurity sites 
or as a natural consequence of the interaction between 
vacancies, is a complex problem which we do not discuss 
in this treatment of monodefect kinetics. Instead we 
investigate the stability of voids against annihilation 
in favor of other sinks, a problem which may be studied 
without admitting an interaction between individual 
point defects. 

In the cases of crystal boundaries, and perhaps 
dislocations, the energy of the extended defect is not 
changed on the average by the absorption of a vacancy. 
On the other hand, a void possesses a surface energy 
which is a function of the void size and therefore 
depends on the number of vacancies contained in the 
void. This fact results in an instability of the void in 
the presence of other sinks. 

If we represent by a the specific surface energy of the 
lattice, then for a void of radius ft, the rate of energy 
change with volume is 

dE/dV=2a/b (49) 

so that the average excess change in energy of the lattice 
on absorption of a vacancy is 

8EF=8T<rr0
z/3b. (50) 
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We may simulate the resulting instability by considering 
the void as a region in which exists an excess dp over the 
thermal equilibrium occupation probability po of a 
lattice site, which is given by 

8p = S7rarQ
spQ/bKT. (51) 

Let us first examine the stability of a set of voids of 
different sizes in the absence of other sinks. To do this 
we construct a lattice of voids having radii bi and b2 

on alternate sites of a sodium chloride structure, with 
excess vacancy concentrations inside the alternate 
voids of dp! and dp2, respectively. The boundary 
conditions imposed on the diffusion equation are that 
p—dpi at 61 and p=dp2 at b2j and moreover, we know 
that the fluxes of vacancies out of neighboring cells 
should be equal and opposite. In a Wigner-Seitz type 
approximation, the latter condition may be interpreted 
as a need for the radial derivative of the occupation 
probability to be equal and opposite at the boundaries 
of adjacent cells. To the order of b/R, this condition 
leads to the same eigenvalue of the diffusion equation 
as that found with a zero derivative at the cell boundary, 
namely (3bi/Rd)112 for a cell containing a void of radius 
b. The average occupation probability p of defect sites 
in the lattice is then 

p=Zl+l6Taros/3kT(b1+b2)lpo (52) 

and the flux flowing from smaller to larger voids is 

dN Swo-Di/bi-b2\ 
— = ( ) , (53) 
dt kT \bi+b2/ 

where Di=p0D, the diffusion coefficient of the ions in 
the lattice. For gold, with o-0^103 ergs cm-2, even at 
300 °C the predicted flux is of the order of hundreds of 
vacancies per second between voids of radii differing by 
a factor of two, so that the smaller voids are annihilated 
at relatively low temperatures. 

The rate of emission of vacancies from a void is 
proportional to the difference between the occupation 
probability po+dp in the lattice surrounding the void, 
and the probability po+dp' with which the voids would 
be in thermal equilibrium: 

dN/dt = 3bD (dp' - dp)rQ~3. (54) 

This makes possible a simple estimate of void stability 
in the presence of sinks whose energy is not dependent 
on their defect content, for the diffusion equation for 
the thermal excess of vacancies then assumed the form 

DV2dp=d(dp)/dt+4,7rbDNv(dp-dp'), (55) 

where Nv is the void concentration and the voids have 
all been given the same radius b. In the quasisteady 
state in which the voids emit and the sink absorbs, we 
may ignore the time derivative leaving 

V*s=4nbNvs (56) 

to be solved subject to s=dp—dp'=0 at the sinks. In 
the case of dislocations, the appropriate solution of 
Eq. (56) is 

*p(r) = Bp'll-Ko(yr)/Ko(yd)l, (57) 

with y= (47riW#)1/2 and Ko a modified Bessel function 
of the second kind, the modified function of the first 
kind playing a minor role for well-separated dislocations. 
The vacancy absorption rate at the dislocation is then 
given by 

dN/dt= - ^TaDi/kTfy/lnirNvbd2)112, (58) 

where d is the dislocation "radius." However, this 
estimate is not very satisfactory since, as the voids 
near the dislocation decrease in size, they will become 
increasingly unstable so that the dislocation will 
annihilate the neighboring voids first and in this way 
make a hole of gradually increasing radius in the void 
distribution. Owing to the increased instability of 
voids near the dislocation, the voids remote from the 
sink may even grow during the early stages of the 
annealing. 

X. CONCLUSION 

We have shown that the diffusion equation is a good 
approximation for studies of point-defect annealing 
kinetics even when the sinks to which the defects 
anneal are of atomic dimensions. The boundary condi
tion to be applied to solutions of the diffusion equation 
have been elucidated in terms of the difference equation 
to which the differential diffusion equation is a macro
scopic approximation. Only for very small sinks do 
these boundary conditions differ appreciably from the 
macroscopic condition of zero excess concentration at 
the sink sites. 

The development of equations which describe diffu
sion in the presence of time dependent sink properties, 
together with the electrostatic approximation to the 
diffusion equation, have allowed us to study the anneal
ing of point defects to stacking-fault tetrahedra, to 
dislocation loops, and to climbing dislocations. We have 
also considered the problem of void stability in the 
presence of other sinks. 

The discussions given in this article have been subject 
to the assumption that the defect jumps in the good 
crystal are reversible, with jump times the same at 
either end of any jump path. In this way we have 
excluded interactions both between the point defects 
themselves and between the defects and the sinks. The 
former consequence is not important for low point-
defect concentrations, but the latter may modify the 
annealing characteristics considerably, particularly in 
cases involving dislocations, where the long range strain 
field associated with the sinks may invalidate the condi
tion Tni=Tin over a large proportion of the lattice. A 
reliable extension of the theory to include the long-range 
elastic interaction between point defects and sinks, and 
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the short-range electronic interaction between the 
defects themselves, is therefore needed to further the 
present understanding of defect kinetics. 

Finally, we note that the description of defects 
annealing to sinks is more easily achieved than that of 
the production of point defects by sinks, for while 
jumps into the sink may be well represented on the 
average by the jump time formalism, certain jumps of 
point defects out of sinks which are involved in breaking 
down sink geometries of high symmetry may well be 
constrained by other energetic considerations. The 
abrupt decay of stacking-fault tetrahedra at tempera
tures above 600 °C is an example of this type of process 

1. INTRODUCTION 

THE processes by which radiation damage is 
produced in a crystal have recently been investi

gated by a new method in which the classical equations 
of motion of a set of several hundred to a thousand 
atoms are integrated on a high-speed computer. The 
atoms are allowed to interact with fairly realistic 
central forces augmented by special forces on the atoms 
at the edge of the set designed to simulate the influence 
of surrounding material. Initially the atoms are at rest 
on the sites of a perfect lattice, and the start of a radia
tion damage event is considered to be the sudden transfer 
of momentum to one of the atoms (the primary knock-
on) by an irradiating particle. The primary knock-on 
then energizes other atoms in a complex many-body 
process, and when the agitation dies away the model 
crystallite is left in a damaged state. Since the primary 
knock-on may have any momentum, within wide limits, 
a series of calculations for representative initial condi-

* Work supported by the U. S. Atomic Energy Commission. 
f Permanent address: Union Carbide, European Research 

Associates, Brussels, Belgium. 

in which the diffusion from the sink is limited by a 
surface reaction at the sink. It seems reasonable to 
assume that vacancy production of crystal boundaries 
other than those parallel to atomic planes, and at the 
surfaces of voids, is not restrained in this fashion. 
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tions must be made. No presuppositions about the 
nature of the lattice defects or about thresholds for 
their production are made—such information is an end 
product of the calculations. The chief assumption which 
must be made is the form of the interatomic potential 
energy, and a number of experimental and theoretical 
requirements are imposed. Also, an upper limit on the 
energy of the primary knock-on is imposed by the size 
of the set of atoms. 
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Radiation damage has been studied by numerically integrating the equations of motion of a large set of 
atoms on a high-speed computer. In this paper the method is applied to a model of a iron. Low energy events 
have been extensively investigated. The primary knock-on atom is found to initiate an extended sequence 
of correlated replacements, producing an interstitial at some distance and a vacancy on its original site. 
The interstitial is found to have a split configuration, as was found earlier in copper, but its axis lies along 
(110). Collision chains are found to be prominent in (111) and (100), and attenuation rates and focusing 
parameters for these chains are determined. The threshold energy for displacing an atom is found to be 
highly dependent on the direction of the knock-on. The lowest threshold is found to be 17 eV, for knock-ons 
directed near (100), and to be about 34 eV and 38 eV for those directed near (110) and (111), respectively. 
The probability of displacement for a randomly directed knock-on of energy E is determined for E between 
0 and 60 eV. The results are in approximate agreement with experiments of Lucasson and Walker, although 
more structure is found in the calculated curve than could be tested by the experiments. Pronounced direc
tional effects in low energy electron bombardments of a iron single crystals are predicted. 


